Extensions 1→N→G→Q→1 with N=C3xD8 and Q=C22

Direct product G=NxQ with N=C3xD8 and Q=C22
dρLabelID
C2xC6xD896C2xC6xD8192,1458

Semidirect products G=N:Q with N=C3xD8 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3xD8):1C22 = S3xC8:C22φ: C22/C1C22 ⊆ Out C3xD8248+(C3xD8):1C2^2192,1331
(C3xD8):2C22 = D8:4D6φ: C22/C1C22 ⊆ Out C3xD8488-(C3xD8):2C2^2192,1332
(C3xD8):3C22 = D8:5D6φ: C22/C1C22 ⊆ Out C3xD8488+(C3xD8):3C2^2192,1333
(C3xD8):4C22 = D8:6D6φ: C22/C1C22 ⊆ Out C3xD8488-(C3xD8):4C2^2192,1334
(C3xD8):5C22 = S3xD16φ: C22/C1C22 ⊆ Out C3xD8484+(C3xD8):5C2^2192,469
(C3xD8):6C22 = D8:D6φ: C22/C1C22 ⊆ Out C3xD8484(C3xD8):6C2^2192,470
(C3xD8):7C22 = C2xC3:D16φ: C22/C2C2 ⊆ Out C3xD896(C3xD8):7C2^2192,705
(C3xD8):8C22 = Q16:D6φ: C22/C2C2 ⊆ Out C3xD8484+(C3xD8):8C2^2192,752
(C3xD8):9C22 = C2xS3xD8φ: C22/C2C2 ⊆ Out C3xD848(C3xD8):9C2^2192,1313
(C3xD8):10C22 = C2xD8:3S3φ: C22/C2C2 ⊆ Out C3xD896(C3xD8):10C2^2192,1315
(C3xD8):11C22 = D8:13D6φ: C22/C2C2 ⊆ Out C3xD8484(C3xD8):11C2^2192,1316
(C3xD8):12C22 = S3xC4oD8φ: C22/C2C2 ⊆ Out C3xD8484(C3xD8):12C2^2192,1326
(C3xD8):13C22 = D8:15D6φ: C22/C2C2 ⊆ Out C3xD8484+(C3xD8):13C2^2192,1328
(C3xD8):14C22 = C2xD8:S3φ: C22/C2C2 ⊆ Out C3xD848(C3xD8):14C2^2192,1314
(C3xD8):15C22 = SD16:D6φ: C22/C2C2 ⊆ Out C3xD8484(C3xD8):15C2^2192,1327
(C3xD8):16C22 = D8:11D6φ: C22/C2C2 ⊆ Out C3xD8484(C3xD8):16C2^2192,1329
(C3xD8):17C22 = C6xD16φ: C22/C2C2 ⊆ Out C3xD896(C3xD8):17C2^2192,938
(C3xD8):18C22 = C3xC16:C22φ: C22/C2C2 ⊆ Out C3xD8484(C3xD8):18C2^2192,942
(C3xD8):19C22 = C6xC8:C22φ: C22/C2C2 ⊆ Out C3xD848(C3xD8):19C2^2192,1462
(C3xD8):20C22 = C3xD8:C22φ: C22/C2C2 ⊆ Out C3xD8484(C3xD8):20C2^2192,1464
(C3xD8):21C22 = C3xD4oD8φ: C22/C2C2 ⊆ Out C3xD8484(C3xD8):21C2^2192,1465
(C3xD8):22C22 = C3xD4oSD16φ: C22/C2C2 ⊆ Out C3xD8484(C3xD8):22C2^2192,1466
(C3xD8):23C22 = C6xC4oD8φ: trivial image96(C3xD8):23C2^2192,1461

Non-split extensions G=N.Q with N=C3xD8 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3xD8).1C22 = D16:3S3φ: C22/C1C22 ⊆ Out C3xD8964-(C3xD8).1C2^2192,471
(C3xD8).2C22 = S3xSD32φ: C22/C1C22 ⊆ Out C3xD8484(C3xD8).2C2^2192,472
(C3xD8).3C22 = D48:C2φ: C22/C1C22 ⊆ Out C3xD8484+(C3xD8).3C2^2192,473
(C3xD8).4C22 = SD32:S3φ: C22/C1C22 ⊆ Out C3xD8964-(C3xD8).4C2^2192,474
(C3xD8).5C22 = D6.2D8φ: C22/C1C22 ⊆ Out C3xD8964(C3xD8).5C2^2192,475
(C3xD8).6C22 = D8.D6φ: C22/C2C2 ⊆ Out C3xD8484(C3xD8).6C2^2192,706
(C3xD8).7C22 = C2xD8.S3φ: C22/C2C2 ⊆ Out C3xD896(C3xD8).7C2^2192,707
(C3xD8).8C22 = Q16.D6φ: C22/C2C2 ⊆ Out C3xD8964(C3xD8).8C2^2192,753
(C3xD8).9C22 = D8.9D6φ: C22/C2C2 ⊆ Out C3xD8964-(C3xD8).9C2^2192,754
(C3xD8).10C22 = D8.10D6φ: C22/C2C2 ⊆ Out C3xD8964-(C3xD8).10C2^2192,1330
(C3xD8).11C22 = C6xSD32φ: C22/C2C2 ⊆ Out C3xD896(C3xD8).11C2^2192,939
(C3xD8).12C22 = C3xC4oD16φ: C22/C2C2 ⊆ Out C3xD8962(C3xD8).12C2^2192,941
(C3xD8).13C22 = C3xQ32:C2φ: C22/C2C2 ⊆ Out C3xD8964(C3xD8).13C2^2192,943
(C3xD8).14C22 = C3xQ8oD8φ: trivial image964(C3xD8).14C2^2192,1467

׿
x
:
Z
F
o
wr
Q
<